
IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 7, JULY 1988 867

so on, until XI,^ = X2,k = * * . = x,,k. It is assumed that all
combinations of each input vector can be received by the comparator.

Put inverters on bit lines of half input vectors as follows.

Qm = (322m,lr * . . t f2rn.k)

where m = [n/2], the minimum integer larger than or equal to n/2.
Therefore,

... ...

= (x z ~ - I , I , X~rn. lr *.., XZm-l ,k , X2m.k)

are two-rail encoded inputs. If n is even, 2m = n. If n is odd, let V,, ,

Applying the design procedure given in Section III to design the K-
= v;.
unit TSCC as a comparator, we can get

ZI =f(x1,1, * * , X I $)

ZZ=fZ(X3,lr ’ ’, X3.k)

Z, = f m (X Z m - 1 . 1 , * ‘ 9 ~ 2 m - I ,&)

when m 5 k. It is easy to verify that B produces all combinations of
(zl, * e , z,,,). As a result of Theorem 3, we have the following
theorem.

Theorem 4: The K-unit network implementing

f m (X Z m - l , l , * * 0 3 X Z ~ - I , ~))

is a TSC comparator.
The comparison of the K-unit network to the multipattern

comparator proposed in [lo] shows that the advantage of the K-unit
TSC comparator is not only the reduction of gate delays, but also the
significant reduction of the number of logic gates needed.

V. CONCLUSIONS
Totally self-checking circuits have caught our attention in the area

of testing and fault-tolerant computing. VLSI technology enables the
reality of TSC circuits. TSC circuits using PLA’s are very appropri-
ate for VLSI implementation. This correspondence presents a general
approach to designing a circuit using PLA’s that achieves the TSC

For the functional SFS PLA’s, concurrent SFS PLA’s with two-
rail encoded outputs are suggested to simplify the design of the
associated TSCC. A design of an SFS multiplexer illustrates the
concurrent SFS PLA.

For the TSC checker, a general design procedure of TSCC is given
to meet the requirement that a given codeword set sufficiently
exercises the TSCC. A K-unit TSC comparator with an arbitrary
number of inputs is a successful application of this kind of TSCC.

ACKNOWLEDGMENT

goal.

The authors would like to thank Dr. L. T. Wang and Z. Li for their
encouragement and helpful suggestions.

REFERENCES
D. A. Anderson, “Design of self-checking digital networks using code
techniques,” TR R-527, Univ. Illinois, 1971.
J. E. Smith and G. Metze, “Strongly fault secure logic networks,”
IEEE Trans. Comput., vol. C-27, June 1978.
M. Nicolaidis, I. Jansch, and B. Courtois, “Strongly code disjoint
checkers,” in Proc. 14th Znt. Symp. Fault-Tolerant Comput.,
Kissimmee, FL, 1984.
J. E. Smith, “Design of totally self-checking combinational circuits,”
Ph.D. dissertation, Rep., R-737, UNv. Illinois, 1976.
G. P. Mak, J. A. Abraham, and E. S. Davidson, “The design of PLAs
with concurrent error detection,” in Proc. 14th Int. Symp. Fault-
Tolerant Comput., Kissimmee, FL, 1982, pp. 303-310.
J. Raiski and V. K. Aganval, “Testing properties and applications of
inverter-free PLA’s,” in Proc. 1985 Int. Test Conf., Philadelphia,

S. L. Wang and A. Avizienis, “The design of totally self-checking
circuits using programmable logic arrays,” in Proc. Ninth Int. Symp.
Fault-Tolerant Comput., WI, 1919.
J. Khakbaz and E. J. McCluskey, “Concurrent error detection and
testing for large PLA’s,” IEEE Trans. Electron Devices, vol. ED-29,
no. 4, 1982.
N. K. Jha and J. A. Abraham, “The design of totally self-checking
embedded checkers,” in Proc. 14th Int. Symp. Fault-Tolerant
Comput., Kissimmee, FL, 1984.
J. A. Hughes, E. J. McCluskey, and D. Lu, “Design of totally self-
checking comparators with an arbitrary number of inputs,” ZEEE
Trans. Comput., vol, C-33, no. 6, 1984.
Y. Min and Z. Li, “A unified fault model for PLAs,” in Proc. Znt.
Conf. Circuits Syst., Beijing, China, 1985.
Y. Min, “Generating a complete test set for PLAs,” in Proc. First Int.
Conf. Comput. Applications, Beijing, China, 1984.
J. Khakbaz and E. J. McCluskey, “Self-testing embedded code
checkers,” ZEEE Trans. Comput., vol. C-33, Aug. 1984.

PA, 1985, pp. 500-507.

Topological Properties of Hypercubes

YOUCEF SAAD AND MARTIN H. SCHULTZ

Abstract-The n-dimensional hypercube is a highly concurrent loosely
coupled multiprocessor based on the binary n-cube topology. Machines
based on the hypercube topology have been advocated as ideal parallel
architectures for their powerful interconnection features. In this paper,
we examine the hypercube from the graph theory point of view and
consider those features that make its connectivity so appealing. Among
other things, we propose a theoretical characterization of the n-cube as a
graph and show how to map various other topologies into a hypercube.

Index Terns-Binary n-cube, characterization of hypercube graphs,
hypercube imbeddings, hypercube networks, hypercube topology.

I. INTRODUCTION
Hypercubes are loosely coupled parallel processors based on the

binary n-cube network and introduced under different names (cosmic
cube, n-cube, binary n-cube, Boolean n-cube, etc.). A few machines
based on the hypercube topology have been experimented in several
institutions, see [8] for references, and others are now being built. An

Manuscript received November 5, 1985; revised July 22, 1986. This work
was supported in part by ONR Grant N00014-82-K-0184 and in part by a joint
study with IBM/Kingston.

The authors are with the Department of Computer Science, Yale Univer-
sity, New Haven, CT 06520.

IEEE Log Number 8716257.

0018-9340/88/0700-0867$01.00 O 1988 IEEE

868

n-cube parallel processor consists of 2" identical processors, each
provided with its own sizable memory, and interconnected with n
neighbors.

There are essentially two broad classes of MIMD parallel
processor design with a large number of processors, presently
competing against each other. The first type of architecture consists
of a large number of identical processors interconnected to one
another according to some convenient pattern. In this type of
machine, there is no shared memory and no global synchronization.
Moreover, intercommunication is achieved by message passing and
computation is data driven (although some designs incorporate a
global bus, this does not constitute the main way of intercommunica-
tion). By message passing, it is meant that data or possibly code are
transferred from processor A to processor B by traveling across a
sequence of nearest neighbor nodes starting with node A and ending
with B. Synchronization is driven by data in the sense that
computation in some node is performed only when its necessary data
are available. Examples include grid networks such as the finite
element machine [l], tree machines [4], the cosmic cube [8], and
many others. At the border line of this class, one might also include
the data flow machines which utilize the same concept of data-driven
synchronization but adopt a more dynamic way of circulating data.
The main advantage of such architectures, often referred to as
ensemble architectures, is the simplicity of their design. The nodes
are identical, or are of a few different kinds, and can therefore be
fabricated at relatively low cost.

The second important class of parallel processors consists of a set of
N identical processors interconnected via a large switching network
to N memories. Thus, the memory can be viewed as split into N
"banks," and shared between the N processors. Variations on this
scheme are numerous, but the essential feature here is the switching
network. Examples include the Ultracomputer developed at NYU [SI
which uses an omega network. The main advantage of this second
configuration is that it enables us to make the data access transparent
to the user who may regard data as being held in a large memory
which is readily accessible to any processor. This greatly facilitates
the programming of the machine but memory conflicts can lead to
degraded performance. Also, the network can simulate any of the
intercommunication patterns of the first type of architecture. On the
other hand, shared memory models cannot easily take advantage of
proximity of data in problems where communication is local.
Moreover, the switching network becomes exceedingly complex to
build as the number of nodes increases. In fact, to connect N nodes,
the Ultracomputer requires a total of O(N log2 N) identical 2 x 2
switches. In particular, this raises the problem of reliability as the
probability of failure increases proportionally with the number of
components. The first models can easily be made fault tolerant by
shutting down failing nodes: at the difference with the shared memory
models, the decision of shutting down failing nodes and choosing
alternate routes is a local one.

As is mentioned above, it is clear that one of the most important
advantages of the first class of designs is the ability to exploit
particular topologies of problems or algorithms in order to minimize
communication costs. Thus, a two-dimensional grid network is
perfectly suitable for solving discretized elliptic partial differential
equations, e.g., by assigning each grid point to its counterpart in the
array, because the iterative methods for solving the resulting linear
systems require only nearest neighbor grid-point interaction. This
means that if a general purpose ensemble architecture is to be
designed, it must have powerful mapping capabilities, i.e., it must be
capable of mapping easily many common geometries such as grids or
linear arrays. The hypercube is a machine of the first class which has
excellent mapping capabilities. This explains in part the growing
interest that hypercube-based architectures are currently arousing.

It is the purpose of this paper to study the topological properties of
the hypercube. We will first derive some simple properties of the
hypercube regarded as a graph and will propose a theorem that will
describe an n-cube by a few characteristic properties. Mapping other
topologies is very important for designing efficient algorithms that
map perfectly into those topologies. We will consider this problem in

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 7, JULY 1988

110 111

000 001

Fig. 1 . 3-D view of the 3-cube.

Fig. 2. 3-D view of the 4-cube

detail and show how to map rings, linear arrays, and multidimen-
sional meshes into hypercubes.

11. THE HYPERCUBE GRAPH AND ITS BASIC PROPERTIES
In what follows, the hypercube is regarded as a graph and we will

often use the terms vertices or nodes interchangeably for the
processors they represent. A 3-cube can be represented as an
ordinary cube in three dimensions where the vertices are the 8 = Z3
nodes of the 3-cube, see Fig. 1. More generally, one can construct an
n-cube as follows. First, the 2" nodes are labeled by the 2" binary
numbers from 0 to 2" - 1 . Then a link between two nodes is drawn if
and only if their binary numbers differ by one and only one bit. In this
paper, we will refer to the hypercube graph, or hypercube, as the
graph thus defined.

Definition 2.1: An n-cube graph is an undirected graph consisting
of k = 2" vertices labeled from 0 to 2" - 1 and such that there is an
edge between any two vertices if and only if the binary representa-
tions of their labels differ by one and only one bit.

The first important property of the n-cube is that it can be
constructed recursively from lower dimensional cubes. More pre-
cisely, consider two identical (n - 1)-cubes whose vertices are
numbered likewise from 0 to 2"-'. By joining every vertex of the
first (n - 1)-cube to the vertex of the second having the same
number, one obtains an n-cube. Indeed, it suffices to renumber the
nodes of the first cube as 0 A a, and those of the second by 1 A a,
where a, is a binary number representing the two similar nodes of the
(n - 1)-cubes and where A denotes the concatenation of binary
numbers. This is illustrated for n = 4 in Fig. 2, where a 4-cube is
obtained by joining all corners of an inner 3-cube with the
corresponding comers of an outer 3-cube. An interesting geometric
property of the illustration is that it provides one way of constructing
higher dimensional cubes from 3-cubes by simply repeating the above
process with more enclosing cubes.

869 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 7, JULY 1988

Separating an n-cube into the subgraph of all the nodes whose
leading bit is 0 and the subgraph of all the n d e s whose leading bit is
1, the two subgraphs are such that each node of the first is connected
to one node of the second. If we remove the edges between these two
graphs, we get two disjoint (n - 1)-cubes. This operation of splitting
the n-cube into two (n - 1)-cubes so that the nodes of the two (n -
1)-cubes are in a one-to-one correspondence will be referred to as
tearing. The tearing suggested above gives privilege to the leading bit
but there is no particular reason for this. More generally, for a given
numbering, tearing simply amounts to separating the graph into two
subgraphs obtained by considering all the nodes whose ith bit is 0 and
those whose ith bit is 1. This will be referred to as tearing along the
ith direction. Since there are n bits, there are also n directions. These
simple properties are summarized in the following proposition.

Proposition 2.1: There are n different ways of tearing an n-cube,
i.e., of splitting it into two (n - 1)-subcubes so that their respective
vertices are connected in a one-to-one way. Given the labeling of
Definition 2.1, each different tearing corresponds to splitting the n-
cube graph into two subgraphs: one whose node labels have a one in
position i and one whose node labels have a zero in position i.

The following result tells us how many ways there for labeling an
n-cube.

Proposition 2.2: There are n!2" different ways in which the 2"
nodes of an n-cube can be numbered so as to conform with Definition
2.1.

Proof.' The proof is by induction. The result is trivial for n = 0.
Assume it is true for n - 1. To number the nodes of the n-cube, we
will first choose their leading bits to be either zero or one. To do so,
we will tear the n-cube into two n - 1 cubes (there are n different
ways to do it). Then we number the nodes of the first (n - 1)-cube
(in (n - 1)!2"-' different ways) and add a one as leading bit, and the
nodes of the second cube in the same way and then add a zero as
leading bit. A second numbering is obtained by reversing the bits zero
and one. We thus obtain a total of

n [(n - 1)!2"-'+(n- 1)!2"-'] =n!2"

different numberings of the vertices of the n-cube.
Note that without the restriction that the numbering must conform

to Definition 2.1, we would have a total of (2")! different ways of
numbering 2" different vertices, a much larger number than that of
Proposition 2.2.

Proposition 2.1 has the following important consequence.
Proposition 2.3: Any two adjacent nodes A and B of an n-cube

are such that the nodes adjacent to A and those adjacent to B are
connected in a one-to-one fashion.

Proof: Since the nodes considered are neighbors, their node
numbers A and B differ by one bit, say the ith bit. Let us tear the n-
cube along the ith direction. Then the neighbors of A and those of B
can be put in a one-to-one correspondence by mapping a node whose
label has a one in its ith position to the one whose label has a zero in

We can define the parity of a node to be positive if the number of
ones in its binary label is even and negative otherwise. It is clear that
neighboring nodes have opposite parity. The following result follows
from this simple property.

Proposition 2.4: There are no cycles of odd length in an n-cube.
, A,, with A i = A,. As we

travel from node A, to node A,, 1 s i I t - 1, the parity changes.
Since A I = A,, there must be an even number of changes, i.e., the

Given two nodes of an n-cube, there is always a path between
them. One way of reaching node B from node A is to modify the bits
of A one at a time in order to transform the binary number A into B.
Each time one bit is changed, this means that we have crossed one
edge. This provides a simple way of constructing a path of length a t
most n between any two vertices of an n-cube. Therefore, recalling
that the diameter of a graph is the maximum distance between any
two nodes in the graph, we can state Proposition 2.5.

Proposition 2.5: The n-cube is a connected graph of diameter n.

its ith position.

Proof: Consider a cycle A I , A2,

length of the cycle is necessarily even.

The above propositions establish some basic properties of the n-
cube as a graph. The important question we would like to answer next
is how to recognize a hypercube in a simple way, i.e., how to
characterize an n-cube by a few simple rules. As an example of
application, looking at a four by four grid with nearest neighbor
connection and wraparound at the edges (of the grid) one might ask
whether the corresponding graph is an n-cube, i.e., whether its 16
nodes can be numbered according to the rule of Definition 2.1. It is
clear that without the wraparound at the edges, the grid cannot be a
cube since all the vertices of an n-cube have the same degree. The
next result will answer this question.

Theorem 2.1: A graph G = (V, E) is an n-cube if and only if
1) V has 2" vertices;
2) every vertex has degree n;
3) G is connected;
4) any two adjacent nodes A and B are such that the nodes adjacent

to A and those adjacent to B are linked in a one-to-one fashion.
Proof: Necessary Condition: Conditions 1-4 are clearly

satisfied for an n-cube as a result of the definition and some of the
previous propositions.

Sufficient Condition: The proof is by induction. It is clear that the
property is true for n = 1. Assume that it is true for n - 1, i.e., that
any graph having 2"-' nodes satisfying Properties 1-4 is an (n - 1)-
cube. The proof consists in separating the graph in two subgraphs
each of which has the same properties for n - 1.

Consider any two adjacent nodes R (for red) and B (for black) of
the graph. According to Property 4, the neighbors of R and those of B
are connected in a one-to-one fashion. We can, therefore, color the
neighbors of the red nodes (except the one node which is already
black) in red and the neighbors of the black node (except the one node
which is already red) in black. This process can be continued until
exhaustion of all links. We refer to two nodes of different colors that
are linked by an edge as two opposite nodes. After this is done we
have the following.

a) All the nodes have been colored either B or R . This is because
the graph is connected and therefore there is a path between the
original node R (or B) to any node.

b) Exactly half the nodes have the color red and the other half have
the color black, because all the B nodes and the R nodes are linked in
a one-to-one fashion.

c) It is clear that the R nodes constitute a connected graph, since,
by construction, each node is connected to the original R node. The
same property holds for the black nodes.

d) Consider the two subgraphs obtained by removing all red-black
links. Thus, each node loses exactly one edge, i.e., its degree is (n -
1). (In the graph theory terminology, the set of R-B edges is called a
cut set.) Then Property 4 is satisfied for the subgraph of the red nodes
(resp., the black nodes).

e) Because of Property 4, and by construction, two red nodes are
adjacent if and only their black opposites are adjacent.

By the induction hypothesis and by b), c), d), and e), the subgraph
of the red nodes is an (n - 1)-cube. Now label the red nodes
according to the definition and use the same labeling for the black
nodes opposite to them [we can use the same labeling thanks to e)].
Adding the bit zero in front of the red nodes and the bit one in front of
the black nodes, we obtain a labeling of the nodes of the initial

A consequence of the theorem is that the 4 X 4 grid with
wraparound at the edges (often referred to as the torus) is a 4-cube. A
generalization is the 4 x 4 x 4 grid in three dimensions with again
wraparound at the edges. From the theorem, this is nothing but a 6-
cube. Thus, these mappings provide simple three-dimensional geo-
metric representations of n-cubes when n 5 6.

graph. w

111. DISTANCES AND PATHS IN HYPERCUBES

Any multiprocessor system should allow for its processors to
exchange data between all of its nodes. Let A and B be any two nodes
of the n-cube and consider the problem of sending data from node A
to node B. The way in which this is achieved in ensemble

870 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 7, JULY 1988

architectures is to move the data (ideally in packets) along a path from
A to B crossing a (possibly small) number of processors. By
definition, the length of a path between two nodes is simply the
number of edges of the path. As was already mentioned in Section 11,
there exists a path of length at most n between any two nodes. To
reach B from A, it suffices to cross successively the nodes whose
labels are those obtained by modifying the bits of A one by one in
order to transform A into B. Assuming that A and B differ only in i
bits, i.e., that their Hamming distance is H(A, B) = i, the length of
the path will be i. Clearly, there is no path of smaller length between
the nodes A and B. This elementary result can be formalized as
follows.

Proposition 3. I: The minimum distance between the nodes A and
B is equal to the number of bits that differ between A and B, i.e., to
the Hamming distance H(A, B).

For future reference we would like to write down explicitly one of
the paths suggested by the proof of the above proposition. This path
corresponds to correcting the first different bit in A and B, then the
second, and so on to the last bit different in A and B. Let A = ala2

b, be the labels of A and B where a, and b,
are the bits zero or one. For convenience we assume without loss of
generality that A and B differ in their i leading bits. Then one path
from A to I? is the following

- a, and B E bl b2 -

A=node O=ala2a3 0 . . a,,;

node l=blaza3 ... a,,;

node 2=b162a3 a,,;

... ...
B=node i=b1b2 - - . bia,+l a,.

The generalization to the case where the different bits in A and B are
not necessarily the leading ones is straightforward.

One important question we would like to address is whether there
are different paths between A and B. The existence of such paths
might be useful for speeding up transfers of large amounts of data
between two nodes. It also provides a way of selecting alternative
routes in case a given node in a path is failing [3]. In order for this to
be possible, the paths must not cross each other, i.e., they must not
have common nodes, except for nodes A and B. We will refer to such
paths as node-disjoint paths or parallelpaths. So the above question
caq be reformulated as follows: how many parallel paths are there
between any two nodes A and B?

A simple look at the above path between A and B reveals that there
is no reason why to start by correcting the first different bit. More
generally, assuming again that the i bits different in A and B are in
front, one might start correcting thejth bit, where 1 5 j I i, then the
(j + 1)st bit, and so forth until the ith bit is reached, after which we
correct, in turn, bits 1, 2, . . * (j + I) . We can thus define i different
paths and number them from j = 1 to j = i. It is easy to prove that
any two such paths are parallel. Indeed, the label h, of the node Xh of
anypathXo,Xl, * * - X h , - . - , X , , (w i t h X o E A) o f t h e a b o v e i
paths, differs from the label of A in exactly h bits. By construction,
any two different paths starting the correction in positions j o and j , ,
respectively, cannot reach the same node Xh in the same number of
steps. Also, they cannot reach this same node in two different
numbers of steps, otherwise one path would correct A into Xh in
changing Il bits while the other will achieve the same result in
changing l2 bits with I I # I,, which is a contradiction. Therefore, we
can state the following proposition.

Proposition 3.2: Let A, B be any two nodes and assume that
H(A , B) < n . Then there are H(A , B) parallel paths of length H(A ,
B) between the nodes A and B.

Note that the choice of a set of i = H(A, B) parallel paths is by no
means unique. Also observe that when i = n, the result is optimal in
that we can use the maximum allowable number of paths leaving from
node A, since the degree of any node is n. We would like now to
improve the above result by showing that if we relax the restriction

that the length must be i, then as many as n parallel paths can be
found even for the case i < n. This is important as it will allow us to
use the furl bandwidth of the multiprocessor for data transfer
operations between two given processors.

Proposition 3.3: Let A , B be any two nodes of an n-cube and
assume that H(A, B) < n. Then there are n parallel paths between A
and B. Moreover, the length of each path is at most H(A, B) + 2.

Proof: In addition to the i paths described prior to Proposition
3.2 and numbered from 1 to i, consider the paths which we will
number fromj = i + 1 to n obtained as follows. First modify the bit
a, into its complement a,. Thus, the additional paths start as their first
node the node

node 1: @')=ala2 * e - d , ~ , , ~ a,,.

Then correct bits 1 through i according to one of the i paths of the
previous proposition to reach, after i steps, the node

node i + l : 6"'=blbz b,b,+l O,a,+l a,.

Finally, remodify the bit aJ into aJ to reach the final destination B. It is
clear by construction that the additional paths thus defined will never
cross each other and that they will not cross any of the initial i paths.
Moreover, the length of each of the additional paths is i + 2.

Note that the constructive proof given above yields i paths of length
i each and n - i paths of length i + 2 each but there are generally
more than just n - i paths of length i + 2. What the proof indicates
is that the first i paths do not use all possible tearings of the cube. The
additional paths exploit the unused (n - i)-cubes corresponding to
the bits in labels of nodes A and B which agree.

N. MAPPING OTHER GEOMETRIES INTO HYPERCUBES
In this section, we will be concerned with the problem of mapping

other topologies (rings and meshes) into the hypercube. What is
meant by mapping other geometries is the following. We are given
some graph G = (V, E) having no more than 2" vertices and we
would like to assign the vertices of the graph into the nodes of the n-
cube so that every adjacent vertex of the graph belongs to neighboring
nodes of the n-cube. There are mainly two different reasons why such
mappings are important.

1) Some algorithm may be developed for another architecture for
which it fits perfectly. Then one might wish to implement the same
algorithm with little additional programming effort. If the original
architecture can be mapped into the hypercube, this will be easy to
achieve.

2) A given problem may have a well-defined structure which leads
to a particular pattern of communication. Mapping the structure may
result in substantial savings in communication time. The best example
is that of mesh geometries that arise from the dicretization of elliptic
partial differential equations in one, two, or three dimensions. Most
iterative methods for solving elliptic PDE's require only local
communication, i.e., communication between mesh points that are
neighbors. If the mesh is perfectly mapped into the cube, then only
local communication will be required between the nodes of the
hypercube thus resulting in important savings in transfer times.

In this section, we consider mapping ring and grid structures into
hypercubes.

A. Mapping Rings and Linear Arrays into Hypercubes
Given a ring-structured graph of 2" vertices, consider the problem

of assigning its vertices into the nodes of a hypercube in such a way as
to preserve the proximity property, i.e., so that any two adjacent
vertices belong to neighbor nodes. Another way of viewing this
problem is that we are seeking a cycle of length N = 2" that crosses
each node once and only once. In graph theory terminology, we are
looking for a Hamiltonian circuit in a hypercube.

If we number the nodes of a hypercube according to Definition 2.1,
i.e., so that two neighbor nodes differ by one and only one bit, a
Hamiltonian circuit simply represents a sequence of n-bit binary
numbers such that any two successive numbers have only one

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 7, JULY 1988 87 1

represented. Binary sequences with these properties are called Gray
codes, and have been extensively studied in coding theory, see, e.g.,

different bit and so that all binary numbers having n bits are 10

161. 11

There are many different ways in which Gray codes can be
generated but the best known method leading to the so-called binary
reflected Gray code is as follows. One starts with the sequence of the
two 1-bit numbers 0 and 1. This is a 1-bit Gray code. To build a 2-bit
Gray code, take the same sequence and insert a zero in front of each

o1

number, then take the sequence in reverse order and insert a one in 00 1 1 1 I 1
front of each number. In other words, we get the sequence

1
Orm 001 011 010 110 111 101 100

* .
a t T T T ?

,,

G2={00, 01, 11, 10). Fig. 3. Two-dimensional Gray code for an 8 x 4 grid.

We can then repeat the process to build a 3-bit Gray code by taking
the above sequence inserting a zero in front, then taking the reverse
sequence and inserting a one in front:

dimensional 8 + p z
= 5 . A binary number A of any node of the 5-cube can be regarded
as consisting of two parts: its first 3 bits and its last 2 bits, which we

4 mesh, i.e., d = 2, = 3, pz = 2, =

G3= {OOO, 001, 011, 010, 110, 111, 101, 100). (4.1) write in the form

A = 61 bzb3CICz More generally, denoting by Gf the sequence obtained from Gi by
reversing its order, and by OG; (resp., 1 4) the sequence obtained
from G; by prepending a zero (resp., a one) to each element of the

recursion

where bi and cj are bits zero or one. It is clear from the definition of

nodes form apl-cube (withp1 = 3). Likewise, whenever we fix the
first 3 bits we obtain a pz-cube. The mapping then becomes clear.
Choosing a 3-bit Grav code for the x direction and a 2-bit Grav code

sequence, then Gray codes of arbitrary order can be generated by the an n-cube that when the last 2 bits are fixed, then the resulting 2P1

G n + I = { O G n , 1G;). (4*2)

It is easy to verify that such sequences are Gray codes [6].
Gray codes allow us to map rings whose lengths are powers of two

into hypercubes. Suppose now that we have a ring of arbitrary length
I which we would like to map into a hypercube. First observe that the
mapping is possible only when I is even since, according to
Proposition 2.4, a hypercube does not admit odd cycles. Therefore,
assume that 4 s I 5 2”. The problem is to find a cycle of length I in
the n-cube, where 1 is even.

Let m = (I - 2)/2 and denote by G,- ~ (m) the partial (n - 1)-bit
Gray code consisting of the first m elements of G, - 1. Then using the
above notation, a cycle having the desired property is the following:

Observe that when 1 = 2“, we obtain as a particular case the formula
(4.2). We can, therefore, state the following.

Proposition 4. I : A ring of length I can be mapped into the n-cube
when I is even and 4 5 I 5 2“.

Finally, we point out that there is no difficulty in embedding a
linear array, instead of a ring, into the n-cube. It suffices to map the
nodes of the linear array Po, P 1 , . * , PI of arbitrary length I 5 2“ -
1 successively into the nodes go, g,, . * e , gI. Given a linear array of
arbitrary length I, the smallest dimension n-cube into which it can be
mapped is clearly the cube of dimension n = [log? (I + 1)1.
B. Mapping Grids into Hypercubes

One of the most attractive properties of the binary n-cube topology
is that meshes of arbitrary dimensions can be imbedded in it. This is
one of the main reasons for the success of hypercube architectures.
Consider an ml x m2 . . x md mesh in the d-dimensional space Rd
and assume that the mesh size in each direction is a power of 2, i.e., it
is such that mi = 2P;. Let n = p , + p 2 + pd and consider the
problem of mapping the mesh points into the n-cube, one mesh point
per node. Observe that we have just enough nodes to accommodate
one mesh point per node.

What is meant by a mapping of the mesh into the cube is an
assignment of the mesh points into the nodes of the cube so that the
proximity property ispreserved, i.e., so that two neighbor points of
the mesh are assigned to neighbor nodes in the cube. In the case d =
1, the problem was solved in the previous section by using Gray
codes. We show next how to extend the ideas of the previous section
to more than one dimension.

Our argument is best illustrated by an example. Consider a two-

I

for the y direction, the point (x;, y,) of the mesh is assigned to the
node bl bzb3~1 cz where 61 b2b3 is the 3-bit Gray code for x; while c1 cz
is the 2-bit Gray code for yj. This mapping is illustrated in Fig. 3
where the binary node number of any grid point is obtained by
concatenating its binary x coordinate and its binary y coordinate.

Thus, if we call a Gray sequence any subsequence of a Gray code,
we observe that any column of grid points forms a Gray sequence and
any row of grid points forms a Gray sequence. Therefore, we will
refer to the codes defined above as 2-D Gray codes.

Generalizations to higher dimensions are straightforward and one

Theorem 4.1: Any ml x m2 * * . x md mesh in the d-dimensional
space Rd, where mi = 2P; can be mapped into an n-cube where n =
p , + p z + p d . The numbering of the grid points is any
numbering such that its restriction to each ith variable is a Gray
sequence.

Note that the assumption that all mi’s be powers of 2 is not
essential and the theorem can be generalized by using the remark
following Proposition 4.1 concerning mapping general one-dimen-
sional meshes. In particular, it suffices to redefine pi in the above
theorem as p i = [log2 (mi)] .

can state the following general theorem.

V. CONCLUSION
We have shown a few properties of hypercubes that put in light

some of the reasons why hypercubes are attractive networks. For
reasons of limited space, we have skipped one other important reason
which is that trees can also be nicely mapped into hypercubes. These
properties are now discussed elsewhere in the literature, for example,
see [7], [2], [9]. These very useful mapping properties make the
hypercube an ideal network and outweigh some of its inherent
drawbacks such as the high cost and complexity of building large
hypercubes.

REFERENCES
[l] L. M. Adams, “Iterative algorithms for large sparse linear systems on

parallel computers,” Ph.D. dissertation, Univ. Virginia, Appf. Math.,
1982. Also available as NASA Contractor Rep. 166027.

[2] S. N. Bhatt and I. C. F. Ipsen, “How to imbed trees in hypercubes,”
Res. Rep. 443, Dep. Comput. Sci., Yale Univ., 1985.

[3] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and
hyperbus structures for a computer network,” ZEEE Trans. Cornput.,
vol. C-33, pp. 323-333, 1984.
S. A. Browning, “The tree machine: A highly concurrent computing [4]

872 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. I, JULY 1988

environment,” Tech. Rep. TR-3760, Dep. Comput. Sci., California
Instit. Technol., 1980.

[5] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L.
Rudolph, and M. Snir, “The NYU Ultracomputer-Designing a
MIMD shared memory parallel computer,” IEEE Trans. Comput.,

E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Al-
gorithms. Englewood Cliffs, NJ: Prentice-Hall, 1977.
Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
Res. Rep. 389, Dep. Comput. Science, Yale Univ., 1985.
C. L. Seitz, “The cosmic cube,” Commun. ACM, vol. 28, pp. 22-
33, 1985.
A. Y. Wu, “Embedding of tree networks into hypercubes,” J. Parallel
Distributed Comput., vol. 2, pp. 238-249, 1985.

vol. C-32, pp. 175-189, 1983.
[6]

[7]

[8]

[9]

An Experimental Study to Determine Task Size for Rollback
Recovery Systems

SHAMBHU J. UPADHYAYA AND KEWAL K. SALUJA

Absfract-The effects of using a recovery cache to save the variables of
a program are studied. A new optimization model for rollback is
formulated to include the effects of a recovery cache in rollback systems.
The parameters of the model proposed in this correspondence are the
maximum recovery time, the cache size, and the save and load times
associated with the task size. We also discuss the results of an
experimental study conducted to estimate the parameters of the programs
that are critical for arriving at a suitable task size or cache size to
minimize the cost of recovery.

Index Terms-Program graph, recovery cache, recovery time, rollback
recovery, task size.

I. INTRODUCTION
Rollback recovery [11, [Z] is an effective technique to recover from

transient failures during a program execution. The variables of the
program should be protected from any damage that may be caused by
the transients in order to have successful recovery. The mechanism of
protecting the recovery data, i.e., data pertinent to successful
recovery from failures is often termed as state saving [Z].

In some applications such as database systems, the state saving is
done in secondary storage [11, [2]. Due to the inherent low speed, the
use of a secondary store for state saving introduces unnecessarily
long delay. Large size buffers may be required if any measures to
reduce this delay are employed. Furthermore, loading the saved state
back to the main memory from a secondary store during recovery
may take large time. Postprocessing of the saved information (such as
elimination of multiple copies) can be employed to reduce the time
for loading back the saved state. But, this may require an independent
processor since any such postprocessing should be done in real-time
for rapid recovery.

Alternatively, a special hardware unit can be used for state saving
[3], [4]. Lee, Ghani, and Heron [4] have proposed a recovery cache
for the PDP- 11, for use in recovery block schemes [5] . This concept
was extended for application in rollback recovery schemes in [6] and

Manuscript received September 12, 1985; revised December 19, 1986.
This work was supported in part by ACRB and ARGS Australia and the
National Science Foundation under Grant DCR-8509194.

S. J. Upadhyaya is with the Department of Electrical and Computer
Engineering, State University of New York at Buffalo, Buffalo, NY 14260.

K. K. Saluja is with the Department of Electrical and Computer
Engineering, University of Wisconsin, Madison, WI 53706.

IEEE Log Number 8716364.

[7]. However, introduction of a recovery cache in rollback systems
influences the rollback point insertion strategy and needs to be
investigated.

Rollback recovery can be implemented in two ways. In one
method, rollback points are inserted at some regular intervals. Some
analytic models for rollback recovery and determination of optimal
checkpoint intervals are discussed in [2] and [8]. The second method
is applicable to those real-time applications in which maximum
permissible recovery time may be a critical parameter. For example,
in a space-borne system, at some stage of operation a “launch
window” may be specified. While the system is in the “launch
window” state, it is important that recovery from any failure take
place within a specified time because the penalty for nonrecovery can
be prohibitively high. Chandy and Ramamoorthy [l] have studied the
automatic rollback insertion under the constraint that at every point in
the program, recovery should be possible within a specified time.

In the method employing an automatic rollback insertion strategy,
a program is analyzed before hand and represented as a sequence of
tasks. Then, based on certain parameters of the program, the rollback
points are inserted in an automatic manner. For a quick recovery, in a
real-time system described above, the task size cannot be made
arbitrary. Furthermore, the finite size of the recovery cache also
effects the rollback point insertion strategy as well as the task size. In
this correspondence, we look into the rollback problem from both
perspectives, the maximum recovery time and the maximum cache
she. In Section II, we present some basic concepts and definitions. In
Section III, the interdependency of task size, maximum recovery
time, and cache size are brought out and the rollback problem is
formulated. Section IV outlines an experimental solution of the
problem and conclusions are given in Section V. The simulation
technique used to obtain estimates of parameters required for the
rollback recovery scheme is given in the Appendix.

U. BASIC CONCEPTS AND DEFINITIONS

A program is represented as a sequence of tasks in a program
graph, in order to automate and optimize the rollback point insertion.
With each task i, a quantity ti is associated which is defined as the
maximum possible execution time for the task. We assume that if an
error occurs within a task, it is detected before the completion of the
task [l]. Thus, ti is the expected time of completion for the task i,
considering the longest path in the task i .

Definition I : The save time Si for a task i is defined as the time
required to make a copy of the modified variables of the task i, during
its execution.

Definition 2: The load time L; for a task i is the time required to
load the saved variables of the task i back into the main memory.

The load time obviously depends on the speed of the loading
mechanism but is directly proportional to the amount of data saved.
The constant of proportionality relating the load time and the amount
of data saved will be denoted by k.

In Chandy and Ramamoorthy’s algorithm [11, determination of the
insertion of rollback points requires an interrogation at each edge of
the program graph. The save time and the load time are associated
with the edges of the program graph. In practice, however, saving of
variables can be done during the execution of a task [4], [6] as
opposed to storing the entire set of variables before the execution of a
task. Let ei denote the execution time for a task i when no rollback
strategy is implemented and let ri represent the execution time
including the time for making a copy of the variables. Then the worst
case value of Si is given by max (ri - ei) taken over all possible paths
in the task i . Note that this will be the path along which the maximum
number of variables are changed.

Definition 3: Save space Pi for a task i is defined as the space
required to store the variables of the task i modified during the time
Si.

The load time Lj and the save space Pi can be related as Li = kPj,
where the constant k has the dimension of timekpace. Note that a

OO18-9340/88/0700-087~$01 .OO 0 1988 IEEE

